

Cellulase (Endo-1,4-Beta-D-Glucanase) from *Aspergillus niger*

Product Information

Cat#	DIA-517
Source	<i>Aspergillus niger</i>
Description	High purity cellulase (endo-1,4- β -D-glucanase) (<i>Aspergillus niger</i>) for use in research, biochemical enzyme assays and in vitro diagnostic analysis.
Form	Suspension
Activity	~ 50 U/mg (40 °C, pH 4.5 on CM-cellulose 4M)
Optimum temperature	60 °C
Stability	> 1 year under recommended storage conditions
Unit Definition	One unit of cellulase activity is defined as the amount of enzyme required to release one μ mole of glucose reducing-sugar equivalents per minute from cellulose 4M (10 mg/mL) in sodium acetate buffer (100 mM), pH 4.5 at 40 °C.
Storage	2–8 °C
Buffer	3.2 M ammonium sulphate
Applications	Applications established in diagnostics and research within the textiles, food and feed, carbohydrate and biofuels industries.
Molecular Weight	27000 Da
Concentration	~ 1200 U/mL
Specificity	Endo-hydrolysis of (1,4)- β -D-glucosidic linkages in cellulose.