

Pyranose Oxidase from Microorganism

Product Information

Cat# NATE-1718

Abbr PROD (Microorganism)

Similar P20

Source Microorganism

Description Pyranose oxidase (P2O) catalyzes the oxidation of aldopyranoses at position C-2 to

yield the corresponding 2-ketoaldoses. P2O is a homotetrameric protein that contains covalently bound flavin adenine dinucleotide (FAD). The in vivo substrates of P2O are thought to be D-glucose, D-galactose, and D-xylose. They are oxidized to 2-keto-D-glucose (D-arabino-hexos-2-ulose, 2-dehydro-D-glucose), 2-keto-D-galactose (D-lyxo-hexos-2-ulose, 2-dehydro-D-galactose), and 2-keto-D-xylose (D-threopentos-2-ulose, 2-dehydro-D-xylose), respectively. Pyranose oxidase has significant activity with carbohydrates such as, L-sorbose, D-glucono-1,5-lactone, and D-allose. When

pyranose oxidase catalyzes the oxidation of aldopyranoses, electrons are transferred to

molecular oxygen which results in the formation of hydrogen peroxide.

Form Yellow power, lyophilized

Enzyme EC 1.1.3.10

Commission

Number

Activity >10U/mg protein

CAS No. 37250-80-9

Molecular Weight 70kDa (SDS-PAGE)

Isoelectric point 5.95

pH Stability 4.0~11.0(50°C,30min)

Michaelis Constant 8.6 10^-3 M(1.5 anlydroglucitol)

7.12×10^-4 M (D-glucose)

Fax:1-631-938-8127 45-1 Ramsey Road, Shirley, NY11967, USA

Pyranose Oxidase from Microorganism

Unit Definition One unit will convert one micromole of Dglucose to 2-Dehydro-D-glucose per minute at

pH 7.0 at 37°C.

Optimum pH 6

Optimum 60°C

temperature

Thermal stability

Fax:1-631-938-8127 45-1 Ramsey Road, Shirley, NY11967, USA